skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Eisenman, Ian"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Mass loss from the Antarctic ice sheet is projected to continue over the coming century. The resultant sea level change will have a regional pattern that evolves over time as the ocean adjusts. Accurate estimation of this evolution is crucial for local communities. Current state-of-the-art climate models typically do not couple ice sheets to the atmosphere–ocean system, and the impact of ice sheet melt has often been studied by injecting meltwater at the model ocean surface. However, observational evidence suggests that most Antarctic meltwater enters the ocean at depth through ice shelf basal melt. A previous study has demonstrated that the regional sea level pattern at a given time depends on meltwater injection depth. Here, we introduce a 2.5-layer model to investigate this dependence and develop a theory for the associated adjustment mechanisms. We find mechanisms consistent with previous literature on the ocean adjustment to changes in forcing, whereby a slower Rossby wave response off the eastern boundary follows a fast response from the western boundary current and Kelvin waves. We demonstrate that faster baroclinic Rossby waves near the surface than at depth explain the injection depth dependence of the adjustment in the 2.5-layer model. The identified Rossby wave mechanism may contribute to the dependence of the ocean’s transient adjustment on meltwater injection depth in more complex models. This work highlights processes that could cause errors in the projection of the time-varying pattern of sea level rise using surface meltwater input to represent Antarctica’s freshwater forcing. Significance StatementSea level rise is expected to be larger in some locations than in others. Accurate projections of the pattern of sea level change, which changes in time as the ocean adjusts, are essential information for local communities. One of the factors that leads to uncertainty in the local sea level change due to Antarctic melt is the depth at which this meltwater is input into an ocean model. We propose a mechanism for a faster response of sea level around the basin when meltwater is injected at the ocean surface compared to when it is injected well below the surface. This mechanism has implications for projections of the regional sea level response to Antarctic melt. 
    more » « less
  2. Abstract Paleoclimate records have been used to estimate the modern equilibrium climate sensitivity. However, this requires understanding how the feedbacks governing the climate response vary with the climate itself. Here we warm and cool a state-of-the-art climate model to simulate a continuum of climates ranging from a nearly ice-covered Snowball Earth to a nearly ice-free hothouse. We find that the pre-industrial (PI) climate is near a stability optimum: warming leads to a less-stable (more-sensitive) climate, as does cooling of more than 2K. Physically interpreting the results, we find that the decrease in stability for climates colder than the PI occurs mainly due to the albedo and lapse-rate feedbacks, and the decrease in stability for warmer climates occurs mainly due to the cloud feedback. These results imply that paleoclimate records provide a stronger constraint than has been calculated in previous studies, suggesting a reduction in the uncertainty range of the climate sensitivity. 
    more » « less
  3. Abstract Positive feedbacks in climate processes can make it difficult to identify the primary drivers of climate phenomena. Some recent global climate model (GCM) studies address this issue by controlling the wind stress felt by the surface ocean such that the atmosphere and ocean become mechanically decoupled. Most mechanical decoupling studies have chosen to override wind stress with an annual climatology. In this study we introduce an alternative method of interannually varying overriding which maintains higher frequency momentum forcing of the surface ocean. Using a GCM (NCAR CESM1), we then assess the size of the biases associated with these two methods of overriding by comparing with a freely evolving control integration. We find that overriding with a climatology creates sea surface temperature (SST) biases throughout the global oceans on the order of ±1°C. This is substantially larger than the biases introduced by interannually varying overriding, especially in the tropical Pacific. We attribute the climatological overriding SST biases to a lack of synoptic and subseasonal variability, which causes the mixed layer to be too shallow throughout the global surface ocean. This shoaling of the mixed layer reduces the effective heat capacity of the surface ocean such that SST biases excite atmospheric feedbacks. These results have implications for the reinterpretation of past climatological wind stress overriding studies: past climate signals attributed to momentum coupling may in fact be spurious responses to SST biases. 
    more » « less
  4. High-resolution process modeling reveals a positive feedback of poleward ocean heat transport due to Antarctic ice shelf melt. 
    more » « less
  5. Abstract The Arctic Ocean is characterized by an ice-covered layer of cold and relatively fresh water above layers of warmer and saltier water. It is estimated that enough heat is stored in these deeper layers to melt all the Arctic sea ice many times over, but they are isolated from the surface by a stable halocline. Current vertical mixing rates across the Arctic Ocean halocline are small, due in part to sea ice reducing wind–ocean momentum transfer and damping internal waves. However, recent observational studies have argued that sea ice retreat results in enhanced mixing. This could create a positive feedback whereby increased vertical mixing due to sea ice retreat causes the previously isolated subsurface heat to melt more sea ice. Here, we use an idealized climate model to investigate the impacts of such a feedback. We find that an abrupt “tipping point” can occur under global warming, with an associated hysteresis window bounded by saddle-node bifurcations. We show that the presence and magnitude of the hysteresis are sensitive to the choice of model parameters, and the hysteresis occurs for only a limited range of parameters. During the critical transition at the bifurcation point, we find that only a small percentage of the heat stored in the deep layer is released, although this is still enough to lead to substantial sea ice melt. Furthermore, no clear relationship is apparent between this change in heat storage and the level of hysteresis when the parameters are varied. 
    more » « less
  6. Abstract Regional patterns of sea level rise are affected by a range of factors including glacial melting, which has occurred in recent decades and is projected to increase in the future, perhaps dramatically. Previous modeling studies have typically included fluxes from melting glacial ice only as a surface forcing of the ocean or as an offline addition to the sea surface height fields produced by climate models. However, observational estimates suggest that the majority of the meltwater from the Antarctic Ice Sheet actually enters the ocean at depth through ice shelf basal melt. Here we use simulations with an ocean general circulation model in an idealized configuration. The results show that the simulated global sea level change pattern is sensitive to the depth at which Antarctic meltwater enters the ocean. Further analysis suggests that the response is dictated primarily by the steric response to the depth of the meltwater flux. 
    more » « less
  7. Abstract Cross-equatorial ocean heat transport (OHT) changes have been found to damp meridional shifts of the intertropical convergence zone (ITCZ) induced by hemispheric asymmetries in radiative forcing. Zonal-mean energy transport theories and idealized model simulations have suggested that these OHT changes occur primarily due to wind-driven changes in the Indo-Pacific’s shallow subtropical cells (STCs) and buoyancy-driven changes in the deep Atlantic meridional overturning circulation (AMOC). In this study we explore the partitioning between buoyancy and momentum forcing in the ocean’s response. We adjust the top-of-atmosphere solar forcing to cool the Northern Hemisphere (NH) extratropics in a novel set of comprehensive climate model simulations designed to isolate buoyancy-forced and momentum-forced changes. In this case of NH high-latitude forcing, we confirm that buoyancy-driven changes in the AMOC dominate in the Atlantic. However, in contrast with prior expectations, buoyancy-driven changes in the STCs are the primary driver of the heat transport changes in the Indo-Pacific. We find that buoyancy-forced Indo-Pacific STC changes transport nearly 4 times the amount of heat across the equator as the shallower wind-driven STC changes. This buoyancy-forced STC response arises from extratropical density perturbations that are amplified by the low cloud feedback and communicated to the tropics by the ventilated thermocline. While the ocean’s specific response is dependent on the forcing scheme, our results suggest that partitioning the ocean’s total response to energy perturbations into buoyancy and momentum forcing provides basin-specific insight into key aspects of how the ocean damps ITCZ migrations that previous zonal-mean frameworks omit. 
    more » « less
  8. Abstract The processes that contribute to the Arctic amplification of global surface warming are often described in the context of climate feedbacks. Previous studies have used a traditional feedback analysis framework to partition the regional surface warming into contributions from each feedback process. However, this partitioning can be complicated by interactions in the climate system. Here we focus instead on the physically intuitive approach of inactivating individual feedback processes during forced warming and evaluating the resulting change in the surface temperature field. We investigate this using a moist energy balance model with spatially varying feedbacks that are specified from comprehensive climate model results. We find that when warming is attributed to each feedback process by comparing how the climate would change if the process were not active, the water vapor feedback is the primary reason that the Arctic region warms more than the tropics, and the lapse rate feedback has a neutral effect on Arctic amplification by cooling the Arctic and the tropics by approximately equivalent amounts. These results are strikingly different from previous feedback analyses, which identified the lapse rate feedback as the largest contributor to Arctic amplification, with the water vapor feedback being the main opposing factor by warming the tropics more than the Arctic region. This highlights the importance of comparing different approaches of analyzing how feedbacks contribute to warming in order to build a better understanding of how feedbacks influence climate changes. 
    more » « less
  9. Abstract The Antarctic Slope Current (ASC) plays a central role in redistributing water masses, sea ice, and tracer properties around the Antarctic margins, and in mediating cross-slope exchanges. While the ASC has historically been understood as a wind-driven circulation, recent studies have highlighted important momentum transfers due to mesoscale eddies and tidal flows. Furthermore, momentum input due to wind stress is transferred through sea ice to the ASC during most of the year, yet previous studies have typically considered the circulations of the ocean and sea ice independently. Thus, it remains unclear how the momentum input from the winds is mediated by sea ice, tidal forcing, and transient eddies in the ocean, and how the resulting momentum transfers serve to structure the ASC. In this study the dynamics of the coupled ocean–sea ice–ASC circulation are investigated using high-resolution process-oriented simulations and interpreted with the aid of a reduced-order model. In almost all simulations considered here, sea ice redistributes almost 100% of the wind stress away from the continental slope, resulting in approximately identical sea ice and ocean surface flows in the core of the ASC in a fully spun-up equilibrium state. This ice–ocean coupling results from suppression of vertical momentum transfer by mesoscale eddies over the continental slope, which allows the sea ice to accelerate the ocean surface flow until the speeds coincide. Tidal acceleration of the along-slope flow exaggerates this effect and may even result in ocean-to-ice momentum transfer. The implications of these findings for along- and across-slope transport of water masses and sea ice around Antarctica are discussed. 
    more » « less